Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132995

RESUMO

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Assuntos
Interneurônios/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Ciclo Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Ventrículos Laterais/embriologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Bulbo Olfatório/embriologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Transdução de Sinais/genética , Transcriptoma/genética
2.
Cereb Cortex ; 31(7): 3536-3550, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33704445

RESUMO

The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.


Assuntos
Feto/embriologia , Lobo Límbico/embriologia , Neocórtex/embriologia , Telencéfalo/embriologia , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Encéfalo/patologia , Feto/diagnóstico por imagem , Feto/patologia , Idade Gestacional , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/embriologia , Ventrículos Laterais/patologia , Lobo Límbico/diagnóstico por imagem , Lobo Límbico/patologia , Imageamento por Ressonância Magnética , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Tamanho do Órgão , Telencéfalo/diagnóstico por imagem , Telencéfalo/patologia
3.
Science ; 369(6503): 546-550, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32554627

RESUMO

The neocortex has expanded during mammalian evolution. Overexpression studies in developing mouse and ferret neocortex have implicated the human-specific gene ARHGAP11B in neocortical expansion, but the relevance for primate evolution has been unclear. Here, we provide functional evidence that ARHGAP11B causes expansion of the primate neocortex. ARHGAP11B expressed in fetal neocortex of the common marmoset under control of the gene's own (human) promoter increased the numbers of basal radial glia progenitors in the marmoset outer subventricular zone, increased the numbers of upper-layer neurons, enlarged the neocortex, and induced its folding. Thus, the human-specific ARHGAP11B drives changes in development in the nonhuman primate marmoset that reflect the changes in evolution that characterize human neocortical development.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neocórtex/embriologia , Animais , Animais Geneticamente Modificados , Callithrix , Feto , Proteínas Ativadoras de GTPase/genética , Humanos , Ventrículos Laterais/embriologia , Ventrículos Laterais/metabolismo , Neocórtex/anatomia & histologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Tamanho do Órgão , Regiões Promotoras Genéticas
4.
Development ; 147(10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32253238

RESUMO

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Assuntos
Ventrículos Laterais/embriologia , Ventrículos Laterais/crescimento & desenvolvimento , Neurogênese/genética , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Inativação de Genes , Interneurônios/metabolismo , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/imunologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
6.
Medicine (Baltimore) ; 98(26): e16118, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31261528

RESUMO

To explore the growth trend of fetal lateral ventricular volume, for understanding the relationship between atrial diameter (AD) and volume in normal fetus and fetus with ventriculomegaly.Overall, 97 sequential fetal head magnetic resonance imaging scans were performed; these pertained to 50 fetuses with normal lateral ventricles [normal group; gestational age (GA): 24-38 weeks] and 47 fetuses with ventriculomegaly (VM) (VM group; GA: 24-37 weeks). The left, right, and total lateral ventricular volume were measured using 3-dimensional magnetic resonance hydrography (MRH). Correlation coefficient (r) was calculated to assess the relationships of measurements. Lineal regression analysis was used to assess correlation of AD and GA with volume. Between-group differences in terms of AD and volume were assessed using t test.Significant linear growth was observed in the total lateral ventricular volume compared with GA in the normal group with a relative growth rate of 2.87% per week (P <.001). Significant linear relationship between AD and volume was observed, and a significant equation was acquired in the normal group and VM groups, respectively, using the simple linear regression model: left volume = 0.438 * normal left diameter (NLD) + 1.359; right volume = 0.493 * normal right diameter (NRD) + 1.012; left volume = 0.959 * left diameter in VM (VLD) - 2.074; right volume = 0.799 * right diameter in VM (VRD) - 0.443. A significant equation was obtained in the normal group and the VM group, using the multiple linear regression model: Total volume (mL) = 0.396 * NLD + 0.410 * NRD + 3.101; and total volume = 0.989 * VLD + 0.834 * VRD - 3.141, respectively. In terms of AD and volume, the left lateral ventricle was significantly larger than the right side in both groups. The volume of lateral ventricle in AD ≥10 mm group was larger than that in the AD <10 mm group. The total volume in the VM group was significantly larger than that in the normal group.The total lateral ventricular volume increased with GA. AD can be used to evaluate the fetal ventricular volume.


Assuntos
Hidrocefalia/diagnóstico por imagem , Hidrocefalia/embriologia , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/embriologia , Feminino , Humanos , Hidrocefalia/patologia , Ventrículos Laterais/patologia , Imageamento por Ressonância Magnética , Tamanho do Órgão , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Diagnóstico Pré-Natal , Estudos Prospectivos
7.
AJNR Am J Neuroradiol ; 40(4): 718-725, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894357

RESUMO

BACKGROUND AND PURPOSE: Few investigators have studied the lateral ventricle formation related to the development of the calcarine sulcus. Our purpose was to establish the relationship between the lateral ventricles and the calcarine sulcus in the second and third trimesters. MATERIALS AND METHODS: Fetal brain MR imaging (3T and 7T) was performed in 84 fetuses at 14-35 gestational weeks. The lateral ventricles and calcarine sulcus were 3D-reconstructed, and quantitative measurements were obtained. RESULTS: The lateral ventricle volume decreases slowly at 14-23 gestational weeks and then increases rapidly at 24-35 gestational weeks. The depth and length of the calcarine sulcus develop with the increase in gestational weeks, leading to be squeezed in the lateral ventricle posterior horn. A linear correlation occurs between the calcarine sulcus length and posterior horn length: Right-length = 2.4204 (LPH) - 27.5706, Left-length = 2.0939 (LPH) - 23.4099. CONCLUSIONS: The variation of lateral ventricle volume evolved from a slow to rapid increase at 14-35 gestational weeks. The shrinkage in the lateral ventricle posterior horn is accompanied by the development of the calcarine sulcus, resulting in a better linear correlation between the calcarine sulcus length and the posterior horn length. The present results are valuable in elucidating the evolution of lateral ventricle development and provide clues for the diagnosis of lateral ventricle abnormalities in the prenatal examination.


Assuntos
Feto/anatomia & histologia , Ventrículos Laterais/embriologia , Neurogênese , Lobo Occipital/embriologia , Feminino , Humanos , Masculino
8.
Proc Natl Acad Sci U S A ; 116(14): 7089-7094, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894491

RESUMO

The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6+/Hopx+ outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.


Assuntos
Cérebro/crescimento & desenvolvimento , Cérebro/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/metabolismo , Cérebro/citologia , Cérebro/embriologia , Embrião de Mamíferos , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Macaca , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fator de Transcrição PAX6/metabolismo , Primatas , Proteínas Supressoras de Tumor/metabolismo
9.
Development ; 146(4)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777863

RESUMO

In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.


Assuntos
Células-Tronco Adultas/fisiologia , Hipocampo/fisiologia , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Animais , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/fisiologia , Hipocampo/embriologia , Humanos , Interneurônios/fisiologia , Ventrículos Laterais/embriologia , Camundongos , Neurônios/fisiologia , Bulbo Olfatório/embriologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Transcriptoma
10.
Neuron ; 101(6): 1117-1133.e5, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30709655

RESUMO

Neural progenitors with distinct potential to generate progeny are associated with a spatially distinct microenvironment. Neocortical intermediate progenitors (IPs) in the subventricular zone (SVZ) of the developing brain generate neurons for all cortical layers and are essential for cortical expansion. Here, we show that spatial control of IP positioning is essential for neocortical development. We demonstrate that HDAC1 and HDAC2 regulate the spatial positioning of IPs to form the SVZ. Developmental stage-specific depletion of both HDAC1 and HDAC2 in radial glial progenitors results in mispositioning of IPs at the ventricular surface, where they divide and differentiate into neurons, thereby leading to the cortical malformation. We further identified the proneural gene Neurogenin2 as a key target of HDAC1 and HDAC2 for regulating IP positioning. Our results demonstrate the importance of the spatial positioning of neural progenitors in cortical development and reveal a mechanism underlying the establishment of the SVZ microenvironment.


Assuntos
Células Ependimogliais/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Ventrículos Laterais/embriologia , Malformações do Desenvolvimento Cortical/genética , Neocórtex/embriologia , Células-Tronco Neurais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Malformações do Desenvolvimento Cortical/embriologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese
11.
Nature ; 567(7746): 113-117, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787442

RESUMO

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Assuntos
Centrossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Microtúbulos/metabolismo , Neurogênese , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Junções Intercelulares/metabolismo , Interfase , Ventrículos Laterais/anatomia & histologia , Glândulas Mamárias Animais/citologia , Camundongos , Tamanho do Órgão , Organoides/citologia
12.
J Comp Neurol ; 527(10): 1598-1609, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552670

RESUMO

Cortical proliferative zones have been studied for over 100 years, yet recent data have revealed that microglial cells constitute a sizeable proportion of ventricular zone cells during late stages of cortical neurogenesis. Microglia begin colonizing the forebrain after neural tube closure and during later stages of neurogenesis populate regions of the developing cortex that include the proliferative zones. We previously showed that microglia regulate the production of cortical cells by phagocytosing neural precursor cells (NPCs), but how microglia interact with NPCs remains poorly understood. Here we report on a distinct subset of microglial cells, which we term periventricular microglia, that are located near the lateral ventricle in the prenatal neocortex. Periventricular microglia exhibit a set of similar characteristics in embryonic rat and fetal rhesus monkey cortex. In both species, these cells occupy ~60 µm of the ventricular zone in the tangential axis and make contact with the soma and processes of NPCs dividing at the ventricle for over 50 µm along the radial axis. Periventricular microglia exhibit notable differences across species, including distinct morphological features such as terminal bouton-like structures that contact mitotic NPCs in the fetal rhesus monkey but not in rat. These morphological distinctions suggest differential functions of periventricular microglia in rat and rhesus monkey, yet are consistent with the concept that microglia regulate NPC function in the developing cerebral cortex of mammalian species.


Assuntos
Córtex Cerebral/embriologia , Microglia/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Macaca mulatta , Microglia/fisiologia , Células-Tronco Neurais/fisiologia , Ratos
13.
J Matern Fetal Neonatal Med ; 32(2): 243-247, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28889762

RESUMO

INTRODUCTION: The aim of this study was to assess the correlation between fetal lateral ventricle width and biometric measurements. MATERIAL AND METHODS: A prospective study on 335 fetuses, 101 fetuses with isolated mild ventriculomegaly and a control group of 234 fetuses with a normal US examination. All fetuses underwent a detailed brain ultrasound scan and a full biometric evaluation. To further compare biometric parameters, we matched, according to gestational week and gender, 91 fetuses from the study group to 91 fetuses from the control group. RESULTS: The mean gestational week during the exam was significantly different between the groups (29.6 weeks in the study group versus 28.3 in the control group, p = .001). The mean maternal age, obstetrical history, mode of conception, or fetal gender did not differ between the groups. After matching according to gestational age and fetal gender, the mean gestational week between the matched groups did not differ and was 29 + 5 weeks in both groups. The study group had significantly larger head circumference (p = .009), biparietal diameter (p < .001), femur length (p = .023), and estimated fetal weight (p = .024) compared with the control group. CONCLUSIONS: Isolated mild ventriculomegaly could be related to other larger fetal biometric measurements and does not necessarily mean a pathological condition.


Assuntos
Peso Fetal/fisiologia , Ventrículos Laterais/diagnóstico por imagem , Malformações do Sistema Nervoso/diagnóstico , Adulto , Estudos de Casos e Controles , Feminino , Idade Gestacional , Humanos , Ventrículos Laterais/embriologia , Masculino , Malformações do Sistema Nervoso/epidemiologia , Malformações do Sistema Nervoso/patologia , Gravidez , Valores de Referência , Índice de Gravidade de Doença , Ultrassonografia Pré-Natal
14.
Cereb Cortex ; 29(5): 2115-2124, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688344

RESUMO

DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.


Assuntos
Corpo Estriado/embriologia , Corpo Estriado/metabolismo , Proteínas do Olho/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Feto Abortado/embriologia , Feto Abortado/metabolismo , Células Ependimogliais/metabolismo , Idade Gestacional , Humanos , Ventrículos Laterais/embriologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Especificidade da Espécie
15.
Development ; 145(20)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30237244

RESUMO

Human brain development proceeds via a sequentially transforming stem cell population in the ventricular-subventricular zone (V-SVZ). An essential, but understudied, contributor to V-SVZ stem cell niche health is the multi-ciliated ependymal epithelium, which replaces stem cells at the ventricular surface during development. However, reorganization of the V-SVZ stem cell niche and its relationship to ependymogenesis has not been characterized in the human brain. Based on comprehensive comparative spatiotemporal analyses of cytoarchitectural changes along the mouse and human ventricle surface, we uncovered a distinctive stem cell retention pattern in humans as ependymal cells populate the surface of the ventricle in an occipital-to-frontal wave. During perinatal development, ventricle-contacting stem cells are reduced. By 7 months few stem cells are detected, paralleling the decline in neurogenesis. In adolescence and adulthood, stem cells and neurogenesis are not observed along the lateral wall. Volume, surface area and curvature of the lateral ventricles all significantly change during fetal development but stabilize after 1 year, corresponding with the wave of ependymogenesis and stem cell reduction. These findings reveal normal human V-SVZ development, highlighting the consequences of disease pathologies such as congenital hydrocephalus.


Assuntos
Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Nicho de Células-Tronco , Adulto , Animais , Criança , Epêndima/embriologia , Feminino , Feto/citologia , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Camundongos , Células-Tronco Neurais/citologia , Neurogênese , Tamanho do Órgão , Organogênese
16.
Development ; 145(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30266827

RESUMO

A specific subpopulation of neural progenitor cells, the basal radial glial cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of the mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that the developing mouse medial neocortex (medNcx), in contrast to the canonically studied lateral neocortex (latNcx), exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse latNcx, the bRGCs in medNcx exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medNcx and forced Hopx expression in mouse embryonic latNcx demonstrate that Hopx is required and sufficient, respectively, for bRGC abundance as found in the developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medNcx that is highly related to bRGCs of developing gyrencephalic neocortex.


Assuntos
Células Ependimogliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Neocórtex/citologia , Neocórtex/embriologia , Animais , Sistemas CRISPR-Cas/genética , Proliferação de Células , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ventrículos Laterais/embriologia , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Fator de Transcrição PAX6/metabolismo , Células-Tronco/citologia
18.
Brain Struct Funct ; 223(8): 3593-3612, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29980930

RESUMO

The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotes.


Assuntos
Evolução Biológica , Córtex Cerebral/embriologia , Ventrículos Laterais/embriologia , Neurogênese , Animais , Córtex Cerebral/metabolismo , Proteínas de Peixes/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/fisiologia , Tubarões/embriologia , Nicho de Células-Tronco
19.
Anat Rec (Hoboken) ; 301(9): 1570-1584, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752870

RESUMO

The existence of neurogenesis in the adult brain is a widely recognized phenomenon, occurring in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus in several vertebrate species. Neural precursors originated in the SVZ migrate to the main olfactory bulb (MOB), originating the rostral migratory stream (RMS) in the process. To better understand the formation of the adult neurogenic niches in dogs, we investigated the cellular composition and morphological organization of these areas in 57 days-old dog fetuses. Using multiple immunohistochemical markers, we demonstrated that the SVZ in the canine fetus is remarkably similar to the adult SVZ, with glial GFAP-immunoreactive (-ir) cells, DCX-ir neuroblasts and SOX2-ir neuronal progenitors tangentially organized along the dorsal lateral ventricle. The fetal RMS has all the features of its adult counterpart and closely resembles the RMS of other mammalian species. The late-development canine MOB has most of the neurochemical features of the adult MOB, including an early-developed TH-ir population and maturing CALR-ir interneurons, but CALB-ir neurons in the granule cell layer will only appear in the post-partum period. Taken together, our results suggest that the canine fetal development of adult neurogenic niches closely resembles those of primates, and dogs may be suitable models of human adult neurogenesis. Anat Rec, 301:1570-1584, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Movimento Celular/fisiologia , Ventrículos Laterais/embriologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Bulbo Olfatório/embriologia , Animais , Proliferação de Células/fisiologia , Cães , Ventrículos Laterais/citologia , Neurônios/citologia , Bulbo Olfatório/citologia
20.
Cell Stem Cell ; 21(5): 635-649.e8, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29033352

RESUMO

Human brain evolution is associated with expansion and folding of the neocortex. Increased diversity in neural progenitor (NP) populations (such as basally located radial glia [RG], which reside in an enlarged outer subventricular zone [OSVZ]) likely contributes to this evolutionary expansion, although their characteristics and relative contributions are only partially understood. Through single-cell transcriptional profiling of sorted human NP subpopulations, we identified the primate-specific TMEM14B gene as a marker of basal RG. Expression of TMEM14B in embryonic NPs induces cortical thickening and gyrification in postnatal mice. This is accompanied by SVZ expansion, the appearance of outer RG-like cells, and the proliferation of multiple NP subsets, with proportional increases in all cortical layers and normal lamination. TMEM14B drives NP proliferation by increasing the phosphorylation and nuclear translocation of IQGAP1, which in turn promotes G1/S cell cycle transitions. These data show that a single primate-specific gene can drive neurodevelopmental changes that contribute to brain evolution.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Primatas/genética , Animais , Biomarcadores/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Córtex Cerebral/citologia , Feto/metabolismo , Perfilação da Expressão Gênica , Humanos , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Ventrículos Laterais/metabolismo , Proteínas de Membrana/genética , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Análise de Célula Única , Especificidade da Espécie , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...